A Cooper pair in a one-atom contact between superconductors

C. Urbina

Quantronics Group, SPEC, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France

A supercurrent can flow through a weak-link—such as a thin insulating barrier, nanowire or molecule—between two superconductors. This famous Josephson effect has had a great impact on fundamental science and is the basis for a variety of devices including magnetometers, quantum amplifiers and qubits. Successful as they are, these devices overlook the existence of an internal degree of freedom, inherent to all weak-links, which we reveal here with experiments performed on the simplest possible weak-link\(^1\): a one-atom contact.

Mesoscopic superconductivity predicts that in the ground state of this many-body interacting system the entire supercurrent is carried by a single Cooper pair state localized around the contact. The pair can be excited electrically into another state that can be long-lived and carries an opposite supercurrent. We will show that this microscopic two-level system can be manipulated coherently despite being embedded in a continuous superconducting fluid.
