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Optomechanics is the field of Physics that studies the reciprocal interactions between light and 

mechanical motion.Originally introduced in the context of gravitational wave detection in the 

1960’s[1], this approach quickly became a template for the study of Quantum Measurement[2], with 

the outstanding perspective to investigate the fundamental principles of quantum mechanics at the 

macroscopic scale[3]. 

The extreme weakness of quantum optomechanical effects raises a number of technological 

challenges aiming at developingoptomechanical systems with enhanced light-motion interaction.In 

particular, the approach of cavity optomechanics[4]has proven to be remarkably efficient, enabling 

the first displacement measurement below the attometre level (10−18𝑚) [5] as well as the first 

radiation pressure cooling of a gram-scale object [6] in the late 1990’s. 

 

Since then, optomechanics has considerably 

developed and improved in a plethora of unexpected and exciting ways, with the emergence of a 

variety of systems ranging from the centimetre down to the nanometre scale[7], see Fig. 1.Thereby, 

Figure 2 A gallery illustrating the variety of optomechanical 
devices, arranged according to mass [7]. 

Figure 2 (a) Hybrid quantum dot nano-optomechanical system. 
Hybrid NV-centrenano-optomechanical system [12, 13]. 

Figure 3  (a) Nano-optomechanics and thermodynamics with 
optically trapped particles [14]. (b) Optomechanics and molecular 
dynamics  withplasmons and molecules [16]. 

Figure 4(a) Nano-optomechanical system for ultra-sensitive 
integrated force detection [17]. (b) Hybrid Electro-optomechanical 
system for quantum-limited signal conversion [18]. 



 
within just 15 years of experimental research, optomechanics has been at the origin of such major 

achievements as the demonstration of macroscopic vibrational states close to the groundstate[8], 

the demonstration of the quantum backaction noise in interferometric measurements [9] or the 

generation of entangled optomechanical states [10]. 

At present, optomechanics is rapidly extending to a number of diverse physical topics, opening 

radically new perspectives both in fundamental and applied Science, such as the dynamical study of 

astrophysical phenomena[11], the coherent control of quantum information through novel hybrid 

optomechanical interactions[12, 13], the unprecedentedly sensitive measurement of nano-optical 

interactions and correspondingly novel, unexplored thermodynamics regimes[14, 15], the elucidation 

and control of molecular dynamics[16], the emergence of a new generation of versatile, highly 

integrated sensors[17] and quantum-limited converters[18]. 

Our mini-colloquium “Optomechanics: Exploring Physics from the macroscopic down to the 

nanometric scale” aims at reviewing the most recent advances in our rapidly growing field, with 

specific attention being devoted to highlighting its interdisciplinary potential.Contributions to this 

session should be given in English. 

More information about JMC15:http://jmc15.sciencesconf.org/ 
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