Topological band theory of network models: “anomalous” Floquet states and a photonic experiment

M. Pasek¹,², W. Hu³, J. C. Pillay³, K. Wu⁴, P. P. Shum³ & Y. Chong³

¹ Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, Paris, France
² Laboratoire Charles Fabry UMR 8501, Institut d’Optique, CNRS, Univ Paris Sud 11, Palaiseau, France
³ Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
⁴ State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China

A recently proposed class of topological photonic systems is shown to map onto the Chalker-Coddington network model, which was originally formulated to study disordered quantum Hall systems. Formally, stationary states of network models are equivalent to the Floquet states of a periodically driven lattice. We show that such network models can indeed exhibit topologically protected edge states even if all bands have zero Chern number, which is a characteristic property of Floquet band structures.¹

We also report on the measurement of a topological invariant in a (microwave) photonic implementation of the network model. Here the topological “edge” invariant is directly accessible through the winding number of the complex reflection coefficients. The experiment can be regarded as a variant of a topological pump, with nonzero winding in the reflection matrix implying the existence of topological edge states.²


Left: Schematic of the “topological pump” setup which was used to measure the topological invariant of a 2D photonic network. Right: Arguments of the complex scattering matrix eigenvalues for the two-cell network, as the pumping parameter is tuned through 2π. The two eigenvalues having winding numbers ±1 corresponds to the bulk band structure being topologically nontrivial.