Single Molecules and Nanoparticles as Optical Probes in Nanoscience

Michel ORRIT

Huygens Kamerlingh Onnes Laboratory, Leiden University, 2300RA Leiden, Netherlands

The optical detection and study of single molecules and other nano-objects provide unique insights into their dynamics and that of their surroundings [1]. They also relate to several branches of physics, as I shall illustrate with some recent experiments. The lifetime-limited lines of single molecules at cryogenic conditions probe acoustic [2] and electric perturbations, making them attractive for quantum optomechanics. We recently studied the dynamics of vapor nanobubbles created in the liquid surrounding a single immobilized gold nanosphere. These nanobubbles form in an instable, explosive process before collapsing and can react to sound waves [3]. Photothermal microscopy opens the study of non-fluorescent absorbers, down to single-molecule sensitivity [4]. The high signal-to-noise ratio enables local plasmonic and chemical probing [5] (see Fig. 1). Fluorescence enhancements in excess of thousand-fold can be observed in a gold nanorod near field at resonance. Gold nanorods also possess intriguing magnetic properties which can be studied through alignment in a strong magnetic field [6]. Experiments on single nanorods would clarify the origin of their giant diamagnetic susceptibility.

Figure 1: Example of an absorption trace of a single gold nanorod showing binding and unbinding events of single proteins [5]. The binding events become more frequent as the protein concentration in the solution increases.