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Transport measurements allow sensitive detection of nanomechanical motion of suspended 
carbon nanotubes. It has been predicted that when the electromechanical coupling is 
sufficiently large a bistability with a current blockade appears. Unambiguous observation of 
this transition by current measurements may be difficult. Instead, we investigate the 
mechanical response of the system, namely, the displacement spectral function, the linear 
response to a driving, and the ring-down behavior. We find that by increasing the 
electromechanical coupling the peak in the spectral function broadens and shifts at low 
frequencies (see Figure) while the oscillator dephasing time shortens. These effects are 
maximum at the transition where nonlinearities dominate the dynamics. These strong 
signatures open the way to detect the blockade transition in devices currently studied by 
several groups. 

	
  
Displacement spectrum, 𝑆!!(𝜔), as a function of the coupling strength 𝜖!. The softening is 
clearly at the critical value 𝜖! = 𝜋Γ. 
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H ¼ HL þHR þHT þ ðϵ0 − xF0Þd†dþ p2

2m
þ k
2
x2; ð1Þ

where d is the destruction operator for the electronic level
on the dot, x is the displacement of the relevant mechanical
mode, p the conjugated momentum, m the mode
effective mass, k the spring constant (giving a pulsation
ω0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
), and F0 the electrostatic force as defined

above. The first three terms describe the leads and their
coupling to the dot:Hα ¼

P
kðϵαk − μαÞc†αkcαk, with α ¼ L

and R, for left and right lead, ϵαk the electronic spectrum,
μα the chemical potential; and HT ¼

P
ktαc

†
αkdþ H:c: the

tunneling Hamiltonian. From these quantities one can
define the single-level width Γα ≡ πt2αρα with ρα the density
of states and Γ ¼ ΓL þ ΓR.
In the Born-Oppenheimer limit (Γα ≫ ω0) the displace-

ment of the mechanical mode can be described by a
Langevin equation:

mẍþ AðxÞ_xþmω2
0x ¼ FeðxÞ þ ξðtÞ; ð2Þ

where the dissipation AðxÞ, the average force
FeðxÞ ¼ F0hd†di, and the stochastic force ξðtÞ are due
to the electrons tunneling through the quantum dot [15,16].
The explicit expressions for A, Fe, and hξðtÞξðt0Þi ¼
DðxÞδðt − t0Þ have been obtained in Ref. [15]:
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AðxÞ ¼ ðF2
0Γ=πÞ

P
αΓα=½ðμα − ϵ0 − F0xÞ2 þ Γ2&2, and

DðxÞ ¼ F2
0ΓLΓR=ðπΓ3Þ½hðμLÞ − hðμRÞ&, where hðμÞ ¼

arctan zþ z=ðz2 þ 1Þ with z ¼ ðμ − ϵ0 − F0xÞ=Γ. In the
same limit a Fokker-Planck equation for the probability
Pðx; p; tÞ can be derived [27,28]:

∂tP ¼ p
m
∂xP − F∂pPþ A

m
∂pðpPÞ þ

D
2
∂2
pP; ð4Þ

with FðxÞ ¼ FeðxÞ − kx.
Softening of the mechanical mode.—We assume that

the device is symmetric: Γα ¼ Γ=2. The presence of the
mechanical coupling modifies the electron-hole symmetry
point for ϵ0 to the value ϵ0 ¼ ðμL þ μRÞ=2þ εP=2. We
will always assume this value for ϵ0 from this point on.
Defining y ¼ x − F0=2k, one determines FðyÞ ¼ −kyþ
ðF0=2πÞ

P
a¼'1 arctan½ðF0yþ aeV=2Þ=Γ& which depends

only on the bias voltage eV ¼ μL − μR and is antisym-
metric in y. The equilibrium positions are defined by the
solutions of the equation FðyÞ ¼ 0. The line εP ¼ εcðVÞ≡
πΓ½1þ ðeV=2ΓÞ2& [for eV=Γ < 2=

ffiffiffi
3

p
] separates the mono-

stable region from the bistable region—see inset of
Fig. 1[29].

Let us now define ωm at a stable point yβ as
mω2

m ¼ −ðdF=dyÞyβ . It goes smoothly from ω0 to 0 for
εP < εc with the analytic form ω2

m=ω2
0 ¼ ðεc − εPÞ=εc,

while for εP ≳ εc it reads 2ðεP − εcÞ=εc [see Fig. 1, orange
dashed lines].
The vanishing of ωm suggests that its direct measurement

should allow the detection of the transition with great
accuracy. As in phase transitions, this mode becomes soft,
leading to a strong response at the transition. The dip in the
gate voltage dependence of ωm observed by four different
groups [3,4,9,12] is the precursor of this softening [32].
Nevertheless, one should be cautious since the definition of
ωm only takes into account the first derivative of the force at
the minimum of the potential. When this term vanishes the
next order terms in y become important and the response of
the system can no longer be predicted simply by the value
of ωm. Therefore, in the following we calculate the typical
measurable quantities and study their behavior when εP is
swept through the transition.
Fluctuation spectrum.—We define the displacement

fluctuation spectrum SxxðωÞ ¼
R
eiωtdth~xðtÞ~xð0Þi, with

~xðtÞ ¼ xðtÞ − hxi. This quantity has been measured
recently in Ref. [10]. We can obtain Sxx numerically from
the Fokker-Planck description following the method used
in Ref. [17]. Writing Eq. (4) as ∂tP ¼ L0P the spectrum
takes the form

SxxðωÞ ¼ −2Tr
"
~̂x

L0

ω2 þ L2
0

~̂xPst

#
ð5Þ

FIG. 1 (color online). Density plot of Sxx as a function of ω and
εP. The values of ωm (orange dashed line), 2ωm (blue dot-dashed
line), and 3ωm (red dotted line) are shown. The units of Sxx are
x2zpm=ω0 ¼ ðmω2

0Þ−1, where xzpm ¼ ðmω0Þ−1=2 is the zero-point
motion displacement. The symmetry of the potential implies that
only odd harmonics are present for εP < εc. Inset: phase diagram
in the plane eV-εP for the stability of the effective potential.
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