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The response of non-adherent peripheral stress fibers (SF) is under scope when mechanical 
stretch is applied. Epithelial cells plated onto deformable micro patterned substrates, displays 
elastic response at short time scales after a fast stretch. More interesting, at long time scales SF 
on compression behaves as a Maxwell material, whereas in extension the SF displays strain-
softening features due to the polymerization of fresh f-actin along the SF. The SF curvature is 

used to obtain mechanical parameters 
from a simply stretching experiment. 
Whereas global fluorescence analysis 
reveals that the f-actin bundle density 
increases in compression, as in the case 
of the contraction of severed SF. In 
contrast, under extension conditions, 
new actin proteins are incorporated into 
the SF, in order to keep a constant 

bundle density. At a local scale, fluorescence analysis of extension experiments reveals 
strengthening and weakening at specific locations of the SF. Thus, we suggest that a self-healing 
mechanism is required, based on a mechano-sensing or mechano-chemical pathway, to 
coordinate the local polymerization and rearrangement of the existing actin proteins, by molecular 
motors activity, along the SF in order to prevent a spontaneous severing. 

 
 
 

 

F-actin labeled RPE-1 cells on PEG/Fibronectin patterns 
before and after stretch. 
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Figure 1. F-actin labeled RPE-1 cells on PLL-g-PEG/Fibronectin patterns. Figures A) and B) cells with main f-actin bundles
at the free edge before stretch and the same cell after 15 minutes at a constant stretch (H like-pattern is displayed on segmented
red lines). Scale bar 20µm. C) F-actin bundle between two anchored points (FAs), of radius of curvature R, cortical tension s

and the line tension l along the bundle. D) Mechanical representation of a SF.

architecture,20–23 thus also depends on time. Then we will consider a general model for both elastic constant, and we will also
assume that the effects on the main elastic constant are close to the unperturbed value. Thus,

K(e, t) =K0 +F(e, t), k(e, t) = k(e, t) (1)

with K0 as the main elastic constant of the SF at null strain, and F(e, t) is a general function that describes the response
of the mechanics of the SF under mechanical solicitation. As shown in figure 1D, the mechanical representation of the SF
is described by the combination of passive and active elements. The temporal evolution of the SF, under constant stretch,
is obtained by solving the equations 2, 3 and 4. From the schematic representation of the SF, yields the equation 2, which
describes the elastic elongation of the bundle, which is under an initial tension l0. Whereas equation 3, describes the elasticity
and viscous dissipation between motors and fibers, plus the contribution of motors exerting forces. The equation 4, corresponds
to a constrain for the total imposed elongation d l and the elongation of the elements d1 and d2.

Kd1 +l0 = l (2)

kd2 + gḋ2 +lae�ḋ
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= l (3)
d1 +d2 = d l (4)

The mechanical parameters K and k stand for the main and the secondary elastic constants of the cytoskeletal elasticity.
The viscous damping, g , arises from the interaction of protein motors and biopolymers, due to the attachment/detachment
dynamics17, 18, 24 (driven by ATP hydrolysis cycle) and the initial line tension is denoted by l0. The motor protein average
mechanical response is modeled by the element M, which consist in a Gaussian function with a maximum force la and a
typical velocity scale V (references 17, 18 demonstrate that l0 = la). The quantities d1 and d2 are related to the elongations of
the mechanical elements K and k� g �M respectively, and d l is the total elongation of the bundle. Our model for molecular
motors mechanical response, is an ad-hoc Gaussian function based on single motor protein experiments.24–26 This Gaussian
response presents two main features: a maximum tension value at null rate of elongation, and a typical velocity scale, which
defines the Gaussian width. Then, our model for protein motors is an average representation for the response of the ensemble of
motors in the system, distributed in a spatially disordered cytoskeleton network. On the other hand, the well known Huxley
model or Hyperbolic model27–29 for molecular motors, is a particular case for skeletal muscle, taking into account actin-myosin
interaction only, in a well defined and spatially organized structure. More recent attempts of the SF mechanical representation
subdivided the bundle in smaller sections in order to account for spatial strain gradients,5, 19 where each subsection does not
differ, in terms of the mechanical properties, from their neighbours. These models use a similar mechanical representation as
used here (Fig. 1D). Nevertheless, both models, gaussian and hyperbolic, contain the same ingredients.

This model system (Eq. 2, 3 and 4) is capable to describe a number of scenarios, such as the extension or compression of
SF. Then, in order to obtain more insight about the key features of the main and secondary elastic constant (Eq. 1) under stretch,
we will study the response of the peripheral SF under compression and extension condition by analysing the radius of curvature,
described at the free edge of the patterned cell, and also the fluorescent intensity of the f-actin bundle over time at a global and
local scale, in order to define precisely the elastic features of the SFs at the light of the experimental data.

Results
As shown in figure 1, at the cell free edge, the f-actin SF form an arc segment of radius R, anchored to the SF adhesion sites.
The SF under mechanical tension l , is curved by the cell cortical tension s (Fig. 1C). Then, the SF radius of curvature is the
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