Kondo temperatures in nanoscale quantum dots

Geunsik Lee and Chang Woo Myung

Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, Korea

Electron correlation is manifested at low temperature as Kondo effects. Contrary to the fact that the resistivity rises upon lowering the temperature for the bulk Kondo system, quantum dots usually exhibit the zero-bias resonant tunnelling, known as the non-equilibrium Kondo effect. This has been observed in several experiments on various quantum dots, such as a single-electron-transistor, carbon nanotubes and molecular quantum dots. It is known that the Kondo temperature for non-equilibrium quantum dot system increases when the electronic degrees of freedom increases, as reported in emergent SU(4) or two channel Kondo system.

Here we present different kinds of quantum dot systems exhibiting the Kondo behavior by controlling the size of degeneracy under external electric or magnetic field. The non-crossing or one-crossing approximation for the electronic self-energy is used together with non-equilibrium Green's functions formalism for the electron transport.