01 JMC 15

Structural and magnetic properties of Fe₇₂Nb₈B₂₀ alloy prepared by mechanical alloying

N. Bensebaa¹, T. Chabi¹, S. Alleg¹, S. Azzaza¹, J.J. Sunol² and J.M Greneche³

² Dep. deFisica, Universitat de Girona, Campus Montilivi, Girona 17071, Spain.

Abstract:

 $Fe_{72}Nb_8B_{20}$ alloy was prepared by mechanical alloying of mixture of Fe, Nb and B powders for 50 h in a high energy planetary ball mill Retsch PM400, under argon atmosphere, using hardened steel vials and balls. Morphological changes, structural, microstructural and magnetic properties were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission Mössbauer spectroscopy (TMS) and vibrating sample magnetometer (VSM). The reaction between Fe, Nb and B powders leads to the formation of bcc Fe (Nb, B) and Nb (B) solids solutions as well as Fe_2B and FeB type borides and amorphous. The coercivity, H_c , and the saturation magnetization, M_s , values are of about 144.516 Oe and 11.51 emu/g respectively.

Keywords: Nanocrystalline materials; Mechanical alloying; FeNbB alloy; X-ray diffraction; transmission Mössbauer spectroscopy; Vibrating sample magnetometer.

¹ Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar B.P. 12, 23000 Annaba, Algérie.

³ Laboratoire de Physique de l'Etat Condensé, CNRS UMR 6087, Université du Maine, 72085 Le Mans Cedex 9, France.