Unphysical and Physical Solutions in Many-Body Theories: from Weak to Strong Correlation

A. Stan1,2,3, P. Romaniello4, S. Rigamonti5, L. Reining3 \& J.A. Berger6

1 Sorbonne Universités, UPMC Université Paris VI, UMR8112, LERMA, France
2 LERMA, Observatoire de Paris, PSL Research University, CNRS, UMR8112, France
3 Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM and ETSF, France
4 Laboratoire de Physique Théorique, IRSAMC, Université Toulouse III, CNRS and ETSF, France
5 Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof and ETSF, Germany
6 Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Toulouse III, CNRS and ETSF, France

The noninteracting Green’s function Z_0 as a function of the interaction V obtained in a simple one-point model using two different iteration schemes (A and B). Squares (red): Z_0^-, the solution of scheme A; circles (blue): Z_0^+, the solution of scheme B; continuous line (orange): Y_0, the physical noninteracting Green’s function.

Many-body theory is largely based on self-consistent equations that are constructed in terms of the physical quantity of interest itself, for example the density or the one-body Green’s function. Therefore, the calculation of important properties such as total energies or photoemission spectra requires the solution of non-linear equations that have unphysical and physical solutions \cite{1,2}. In this work we show using a simple model in which circumstances one runs into an unphysical solution (see the figure for an example), we illustrate the dramatic consequence that many-body theories become unpredictive, and we indicate how one can overcome this problem \cite{3}. Our findings point out that currently used strategies to develop approximations are only valid in a regime of weak to moderate interaction strength, and that they have to be completely changed in the strong-correlation regime. We propose a new strategy for strong correlation.

\begin{thebibliography}{9}
\end{thebibliography}