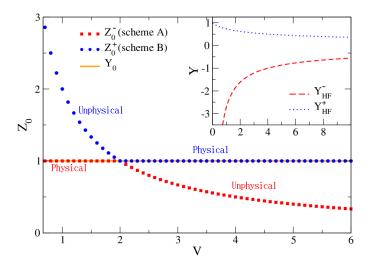
Unphysical and Physical Solutions in Many-Body Theories: from Weak to Strong Correlation

A. Stan^{1,2,3}, P. Romaniello⁴ S. Rigamonti⁵, L. Reining³ & J.A. Berger⁶

¹ Sorbonne Universités, UPMC Université Paris VI, UMR8112, LERMA, France


² LERMA, Observatoire de Paris, PSL Research University, CNRS, UMR8112, France

³ Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM and ETSF, France

⁴ Laboratoire de Physique Théorique, IRSAMC, Université Toulouse III, CNRS and ETSF, France

⁵ Humboldt-Universität zu Berlin, Institut für Physik and IRIS Adlershof and ETSF, Germany

⁶ Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Toulouse III, CNRS and ETSF, France

The noninteracting Green's function Z_0 as a function of the interaction V obtained in a simple one-point model using two different iteration schemes (**A** and **B**). Squares (red): Z_0^- , the solution of scheme **A**; circles (blue): Z_0^+ , the solution of scheme **B**; continuous line (orange): Y_0 , the physical noninteracting Green's function

Many-body theory is largely based on self-consistent equations that are constructed in terms of the physical quantity of interest itself, for example the density or the one-body Green's function. Therefore, the calculation of important properties such as total energies or photoemission spectra requires the solution of non-linear equations that have unphysical and physical solutions [1,2]. In this work we show using a simple model in which circumstances one runs into an unphysical solution (see the figure for an example), we illustrate the dramatic consequence that many-body theories become unpredictive, and we indicate how one can overcome this problem [3]. Our findings point out that currently used strategies to develop approximations are only valid in a regime of weak to moderate interaction strength, and that they have to be completely changed in the strong-correlation regime. We propose a new strategy for strong correlation.

- [2] J. A. Berger, P. Romaniello, F. Tandetzky, B. S. Mendoza, C. Brouder, and L. Reining, New J. Phys. 16, 113025 (2014)
- [3] A. Stan, P. Romaniello, S. Rigamonti, L. Reining, and J. A. Berger, New J. Phys. 17, 093045 (2015)

^[1] G. Lani, P. Romaniello, and L. Reining, New J. Phys. 14, 013056 (2012)